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The Lighthill formalism for jet noise prediction is extended to accommodate wave 
transport by the mean jet flow. The extended theory combines the simplicity of the 
Lighthill approach with the generality of the more complex Lilley approach. There is 
full allowance for ‘flow-acoustic’ effects: shielding, as well as the refractive ‘cone of 
(relative) silence’. A source term expansion yields a convected wave equation that 
retains the basic Lighthill source term. This leads to a general formula for power 
spectral density emitted from unit volume as the Lighthill-based value multiplied by a 
squared ‘normalized’ Green’s function. The Green’s function, referred to a stationary 
point source, delineates the refraction dominated ‘cone of silence’. The convective 
motion of the sources, with its powerful amplifying effect, also directional, is accounted 
for in the Lighthill factor. Source convection and wave convection are thereby 
decoupled, in contrast with the Lilley approach: this makes the physics more 
transparent. Moreover, the normalized Green’s function appears to be near unity 
outside the ‘cone of silence’. This greatly reduces the labour of calculation: the 
relatively simple Lighthill-based prediction may be used beyond the cone, with 
extension inside via the Green’s function. The function is obtained either experimentally 
(injected ‘point ’ source) or numerically (computational aeroacoustics). Approximation 
by unity seems adequate except near the cone and except when there are coaxial or 
shrouding jets : in that case the difference from unity will quantify the shielding effect. 
Further extension yields dipole and monopole source terms (cf. Morfey, Mani, and 
others) when the mean flow possesses density gradients (e.g. hot jets). 

1. Introduction 
Lighthill, in his seminal papers of 1952 and 1954, posed the problem of flow noise 

in terms of a wave equation for a ‘uniform medium at rest, which coincides with the 
real fluid outside the region of flow ’. The actual flow was effectively incorporated into 
right-hand-side terms, which were interpreted as sources of sound. Although the 
equation is exact, approximations to these source terms have the effect of suppressing 
sound convection (hence refraction and shielding) by the mean jet flow (Ribner 1962, 
1964). (Some effects of refraction were pointed out by Powell (1954) even before this 
connection was made.) Equivalent equations for a moving medium have been put 
forward (e.g. Phillips 1960; Csanady 1966; Schubert 1969, 1972~7, b ;  Lilley 1972): they 
allow for the sound convection. Of these, Lilley’s equation has received much 
attention: it has been developed by Mani (1972, 1976~1, h), Balsa (1976a, 6 ,  1977), and 
others (Tester & Morfey 1976; Morfey, Szewczyk & Tester 1978; Balsa & Gliebe 1977; 
Balsa et al. 1978, Gliebe & Balsa 1978; Gliebe et af. 1991) into a quantitative predictive 
formalism for properties of jet noise. It entails a formidable derivation or calculation 
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of a Green’s function for a moving source in highly idealized models of a jet flow. By 
contrast, the Lighthill procedure is relatively simple, as developed by Ribner (1969), 
Pao & Lowson (1970), and others based on Csanady (1966) (Krishnappa 1968; 
Krishnappa & Csanady 1969; Moon & Zelazny 1975). These various formalisms appear 
to yield comparable predictive accuracy outsid’: the ‘cone of silence’ (figure 1) opening 
downstream of the jet (Ribner 1977, 1981). Within this cone the Lighthill-based theory 
fails completely - it predicts no attenuation (figure 1, pattern B+ C) - whereas the 
Lilley-based theory exhibits good to poor accuracy, depending on frequency (see Mani 
1976~).  

Certain early analytical findings (see below) led to the notion that the Lighthill 
formalism could be extended so as to be valid both inside and outside the ‘cone of 
silence’ like Lilley’s. The end result would be attractive : the extended Lighthill theory 
would have the simplicity of the Lighthill approach and the generality of the Lilley 
approach. There would be full allowance for ‘ flow-acoustic’ effects, shielding as well 
as the refractive ‘cone’. That development has been the object of the present paper. We 
turn now to the underlying concepts. 

It is now well known (Ribner 1962, 1964; Csanady 1966) that expansion of the basic 
Lighthill source term leads to extra terms that may be shifted to the left-hand side to 
yield a convected wave equation : it was the implicit discarding of these extra terms that 
was cited further above. The expansion was exploited in Ribner (1977, 1981) to 
demonstrate a considerable equivalence between the Lighthill- and Lilley-based 
approaches outside the ‘cone of silence’. In the course of the present study it was 
realized that the dominant residual source terms, in the ‘parallel flow’ approximation, 
were fully equivalent to the Lighthill term. 

The basis of the extension lies in replacing the ordinary oscillatory Green’s function, 
eikr/4nr, by that for the convected wave equation. These are both for a stationary point 
source, in contradistinction to the moving source of the Lilley procedures; this 
decouples convection of the sources and the sound waves, permitting the cited 
simplifications in the theory. In consequence, the physical interpretation is also more 
transparent. The following analysis develops the mathematical implementation. Since 
the Green’s function is frequency-dependent, the formalism is directed toward the power 
spectral density, in particular, from unit volume. Then integrations can provide the full 
jet spectrum and the broadband noise intensity. All of these are direction-dependent. 

The present study is based on Ribner (1995) with both condensation and revision: 
it evolved from the survey paper, Ribner (1981). The earlier paper illuminates certain 
facets only briefly touched on herein; moreover, it displays graphically several 
comparisons of theory and experiment merely cited here. For a fuller understanding 
and perspective as to how the present notions relate to other theories of jet noise, that 
paper should be consulted as well. 

2. Modified Lighthill equation 
2.1. Unconvected wave equation: virtual medium at rest 

Lighthill manipulated the conservation equations of fluid dynamics into the form of a 
wave equation forced primarily by nonlinear terms in the unsteady velocity G+ on the 
right-hand side. When pressure replaces the density that he used as independent 
variable his equation takes the form 
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FIGURE 1. Synthesis of the directional pattern of jet noise, displaying the refractive zone: the ‘cone 
of silence’. Logarithmic (decibel) scale. B, basic pattern ; C. convective amplification ; R, refraction. 

Additionally, the fluid has been approximated as inviscid (justified in Lighthill 1952, 
Goldstein 1976). The right-hand side is interpreted as a spatial distribution of sources 
of sound. All of the effects of the flow  the turbulence and the mean flow - are 
incorporated in the source terms. They are treated as if imbedded in a ‘virtual medium 
at rest’. For the fluid as here idealized, (1) is exact. 

In the usual approximation, the last two terms are taken to cancel, and the fluid 
density is taken to be a constant (p  = po) in the first. This leads to 

A rich literature (much of it cited in Ribner 1964, 198 1 )  has dealt with applications of 
this equation for the prediction of properties of jet noise. 

It is implicit in (2) that the time-average density is spatially uniform ( p  = po). 
Important additional source terms arise when p is non-uniform, as in a heated jet or 
jet of foreign gas (Morfey 1973; Mani 1976h; Michalke & Michel 1979, 1980). Their 
derivation is included in the Appendix. 

The early replacement of p by po to yield (2) is premature, however; it has the effect 
of suppressing wave convection (and refraction) by the flow (Ribner 1962, 1964). The 
first step in the demonstration is an expansion of the original first source term. It takes 
the simplest form under the specification of a unidirectional, transversely sheared, 
mean flow U(x, ) .  The instantaneous local velocity is written as the mean plus a 
perturbation u,, 

and the expansion changes (1) to 
u,  = u, + u / ,  u, = (U(Y,), o,o> ( 3 )  

using the definition 
DIDt = 2/?t + U ?/?,y, ( 5 )  

as a convective derivative following the mean flow. Equation (4) is restricted compared 
with (1) by the ‘parallel flow’ specification ~ a local approximation to a jet flow; for 
this scenario it is exact. 
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2.2 Convected wave equation : actual medium with flow 
At this point we approximate D 'p/Dt2 as C-2D2p/Dt2. Where c = ~ ( x )  is a local time- 
average sound speed (the order of the error is examined in Ribner 1995, Appendix B). 
On shifting the term to the left-hand side, (4) becomes 

This is not yet in final form. The second source term, involving mean flow shear 
aU/ax,, is linear in u,; this implies a linear connection with p via the momentum 
equation (see below). For this reason, it has been argued (Schubert 1969, 1972; Lilley 
1972; Doak 1972) that the term participates in wave propagation and so should be on 
the left-hand side. (See Goldstein 1976 for a further discussion.) This applies, however, 
only to a small acoustic (or compressible) component associated with wave 
propagation. Within a subsonic flow the overwhelming part of ui is induced by the 
turbulence vorticity ; being small compared with the soundspeed, it may be 
approximated as incompressible. Thus we split off the small acoustic component of the 
shear term (containing uZae) and place it on the left-hand side. But we neglect its loss 
from the right-hand side as being negligible. (The acoustic component of the first 
source term, on the other hand, is of higher order and may be neglected on both sides.) 

It is at this point that we may justifiably apply Lighthill's approximation p = pO to 
the remaining right-hand-side source terms. Consistently, the ui are taken to have zero 
divergence. Equation (6 )  then becomes 

where uaac is defined via the momentum equation 

The corresponding equation for an oscillatory point source is 

The solution of the pair of equations (8) and (9) for p may be written G eciWt, defining 
the Green's function G(x, y 1 w )  in the frequency domain. The Green's function will be 
central to the further developments herein. 

In applications, we specialize to the far-field asymptotic form of the Green function, 
G, decaying like l/r,  r = Ix-yl. Then, compatibly, the pressure p of (8) refers to an 
acoustic field; within the flow it is weak compared with the 'pseudosound' pressure 
field (Blokhintsev 1956) of the turbulence. The pseudosound pressure depends on the 
excluded near-field terms of G that decay like l / P .  

Recall now that (4)-(9) relate to turbulence ui superposed on a transversely sheared 
mean flow ui = (U(x,),O,O). For this scenario we examine the Lighthill source term 
pOavivj/axixj of (2), where vi = Ui+ui. On carrying out the differentiation, the term 
expands exactly into the two terms on the right-hand side of (7). Thus that equation 
is exactly equivalent to 
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FIGURE 2. Shear term in postulated source role. Comparison of experimentally derived x , shear noise 
and 0, self-noise spectra, normalized to the same amplitude. The self-noise has been downshifted 
one octave, in accordance with the theory. The close match supports the rationale. (After Ribner 
1981, based on Nossier & Ribner 1975.) 

In the expansion we have used the incompressibility relation i?u,/c?x, = 0 implied by 
taking p = p,,; as noted, the approximation of incompressibility is made only in the 
source terms. 

Equation (10) is a major new result: it generalizes the unconvected wave equation 
(2) of Lighthill to allow explicitly for the mean jet flow. By accounting for wave 
convection, its solutions will display sound refraction by velocity gradients. An 
appealing feature is the retention of the same right-hand-side source term as in (2). This 
is traceable to the deferral of the step p = po in the term : the degree of approximation 
in making that step between (6) and (7) is less than in making it between (1) and (2). 

According to Lighthill's physical arguments, po ?ci rj/?xi x i  of (10) is a valid source 
term for flow noise. From the above it is clear that the two right-hand source terms of 
(7), being an equivalent expansion for the sheared mean flow, are likewise valid source 
terms for that scenario: the 'shear noise' term 2p,,(?U/c?x,) (c?u,/?x,) as well as the 'self- 
noise' term, p o  c?ut uj/'?.xi xj. In an alternative development, Lilley, in effect, moved 
virtually the entire shear term to the left-hand-side wave operator (Lilley 1972; Mani 
1976~) .  The 'shear noise' source term so lost from the right-hand side is of major 
importance. 

This was shown indirectly by Ribner (1964, 1969), and later more directly by Pao & 
Lowson (1970) in terms of Lighthill's equation. In their analyses, they postulated 
isotropic turbulence superposed on a sheared mean flow. For this scenario the 
radiation from the first source term of (7) ('self-noise' from turbulence alone) is 
omnidirectional, whereas that from the second source term ('shear noise') has a dipole- 
like directivity. Thus the combined directivity (the ' basic' directivity of the source 
pattern) is somewhat ellipsoidal (figure 1). Moreover, if ui is proportional to e&"', then 
u i  u j  is proportional to e-i2'"', a frequency doubling. This suggests that the self-noise 
spectrum lies roughly an octave above the shear-noise spectrum. Because of the 
differences in directivity, the two spectra (in terms of source frequency) can be 
separated out from experimental measurements: they can be extracted from a pair of 
readings at r') = 45" and 9 = 90" at each frequency (Nossier & Ribner 1975). Some 
results from data of several experimenters are plotted in figure 2: self-noise spectra, 
downshifted one octave, are superposed on shear-noise spectra. These show a 
surprisingly good match. Thus. not only does the shear noise exist, but its spectrum is 
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related to the self-noise spectrum in a fashion implied by the theory. (It is noted that 
Lilley's formalism contains a residual ' shear-noise ' source term, defined differently. It 
remains after the shift of the major part to the left hand side. Being of order turbulent 
velocity squared, its noise spectrum will not be downshifted an octave from the self- 
noise spectrum.) 

We reiterate the restrictive assumption underlying the above results : they are based 
on the specification of a unidirectional, transversely sheared, mean flow U(x,), of 
uniform density. This limitation is partly relaxed in the Appendix in the context of an 
exact expansion of the Lighthill source term. This employs a general flow U(x) and 
then introduces approximations appropriate to a jet flow. It supports the applicability 
of (7) and (10) to realistic spreading jets (with the subscript 2 in the shear term referring 
to the radial direction in a round jet). The expansion, moreover, allows for mean flow 
density gradients; these give rise to important additional source terms in the cases of 
hot jets and jets of foreign gases (Morfey 1973; Mani 19763; Michalke & Michel 1979, 
1980). 

The following sections develop a formalism for the power spectral density of the 
sound radiated by the source terms on the right hand side of the convected wave 
equation (10). 

3. Formulae for power spectral density 
3.1. Arbitrary sow-ce term, Q(x, t )  

The formulae that follow are based on the Green function G(x, y 1 w )  for a stationary 
oscillatory point source at point y .  The approach parallels that of Balsa (1977: 
Appendix) based on a moving oscillatory point source, with missing steps being 
inferred. We seek the power spectral density @ ( x ( w )  of the radiated sound pressure 
dictated by equations (2) or (10); they may be written symbolically as 

(1 1) 
where 2 may be either the unconvected wave operator of (2) or the convected wave 
operator of (10); Q(x, t )  is an arbitrary source term. The a(x )  are the coefficients; for 
the convected wave operator they allow for the local mean flow, taken as U(x,), and 
a space-variable sound speed. (In a generalized version of (10) in Appendix A, U(x,) 
becomes U(x), and po becomes &x), where p is a local time average. Equation (1 1) 
applies to this version as well.) Correspondingly, 

where p ,  fi  and Q,  0 are defined in Fourier transform pairs: 

ZPP, alax; a(.u)lp(x, t )  = Q(x, l ) ,  

p[ - iw, a/ax; alfi(x 1 (0) = Q(x 1 W >  (12) 

Equation (12) has a solution 
" 

fi(x I w )  = I-, G(x5 Y I 0) Q(Y I w )  d3Y (15) 

in terms of a Green's function G(x, y 1 w )  in the frequency domain that is the solution of 
9[ - iw , a/ax ; a] G(x, y I w )  = 6(x - y). (16) 
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@(x 1 fd) = @ ( x  I w)fi*(x 1 fd)) 
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The (two-sided) power spectral density of the sound pressure is evaluated as 

(1 7) 

where ( ) signifies an ensemble average. Inserting ( 15). with y replaced by y’ and y” ,  

G(x, y’ 1 ( 1 1 )  G*(x, y” I w) (&y’ I w )  Q*(y” I ( 1 ) ) )  d“ y’ d“y” (18) 

- G(x,y+5/21o)G*(x,y-x/2I~~,)(Q(y+5/21~~~)Q*dv-5/21~~))d~5d‘yY, 

(19) 

I”, .T;i, @(x I fd) = 

- i:: 
where 5 = y’-y” and y = (y’+y”)/2. 

3.2. Reduction f o v  ,fur , f ield 
The Green’s function of (19) may be written in the form 

G ( x , y  1 W) = IG(x.y I (,))I e’’i(“.”l“’’. (20) 

We now restrict x to the far field defined by 1x1 being very much greater than both IyI 
and the largest wavelengths of concern; y is limited to the region of non-zero source 
strength Q. A sufficient approximation for the phase. which seems to be implied by 
Balsa (1977), is then 

(see after (19)) where the wave vector 

~ k ( x . y ’ ~ w )  = plf(x,y”Io)-K.5 (21) 

K = -(“y + ) j a r f i e / d  (22) 

is proportional to o. There seems to be the further reasonable assumption, which we 
make also, that the variation in amplitude of G is negligible compared with that of the 
phase as 5 of (19) ranges within the source region Q. Then 5 may be dropped in 
comparison with y in the amplitude so that 

G ( x , y + < / 2 1 ~ ) G * ( x , y - 5 / 2 1 ~ )  = JG(x.yl ~ ) l ~ e - ’ ~ ’ ~ .  (23) 

(24) 

(25 )  

The other factor in (1  9) is the frequency-domain correlation 

R(y ,  5 [ (0 )  = (00, + 5/2 1 .I) Q*@ - 5/2 1 ( 0 ) ) .  

Rdv, 5, 7) = <Qb + 5 / 2 ,  r + 7) QCV - 5/2. t>> 

This is the Fourier transform of the time-domain correlation 

(which is independent of t )  ; specifically, 

Insertion of (23) and (26) into (19) yields 

Equation (27) is the desired general result for the power spectral density @(x I w) .  The 
inner integral can be recognized as a four-dimensional Fourier transform of the two- 
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point space-time correlation RCy, <, 7) of the source pattern QCy, t ) .  Alternatively, it is 
a three-dimensional transform of the cross-spectral density RCy, < 1 w ) .  This transform 
multiplied by the square of the amplitude of the Green's function (frequency domain) 
has a simple interpretation: it is the contribution of unit volume of the sources Q to 
the power spectral density of the sound pressure radiated to the field point x .  

3.3. Moving reference frame 
Experimentally the correlation R(y, &7) in a jet flow has a form describing a moving, 
fluctuating pattern. This is dealt with most neatly by transforming to a reference frame 
moving with the pattern convection velocity, taken as U, (but the Green's function, 
unlike that in the formalism of Balsa 1977, still refers to a point source at rest). 
Following Chu (1966, 1973), we take 

so that 

and re-express R in terms of <,, using (28), as 

J - m J - m  

m o o  

d3 <, d7 (31) - R,b, <,, 7) (e-iK.<,+i(w-K.u& 7 
- s_,s., 

since the Jacobian of the transformation 5-5, is unity. We may further define 

= W - K .  u, (32) 

as the effective Doppler shifted source frequency in the moving frame to yield an 
observer frequency w at x in the stationary frame (far field). Inserting these last two 
equations converts (27) into 

This is an alternative form for the power spectral density in which R is re-expressed (as 
R,) in a moving reference frame: it is more useful in that the effects of source 
convection are more easily brought out. In (27) the space-time source field correlation 
is referred to a stationary coordinate frame and is designated R. In (33) this same 
correlation is referred by transformation to a coordinate frame moving with velocity 
Uc, and is designated R,. In both cases the two points being correlated are stationary. 

3.4. Lighthill source term, Q(x,  t )  = p(x )  a2 vi, vj /axi  axj 
Consider a source strength distribution of the form of the right-hand side of (10). When 
generalized (Appendix) to allow for space-variable time-average density ( po replaced 
by p(x)) it takes the form 

~ ( x ,  t )  = ?(XI a2vi q a x ,  axj. (34) 
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An extension of the derivation leading to (27) can be carried out (Ribner 1995) wherein 
the differentiation leads to factors ki .  The power spectral density of the sound radiated 
by Qb, t) of this functional form comes out to be 

@(x 10) = IG(X,Y/ W)l”Ir”0..) s: 
x K~ K~ K~ K ,  (a i  vjCy’, t + 7) vk uJy”, t)) eciK.c+ird7 d7d3<d3y. (35) 

On taking K ~ K ~ K ~ K ~  inside the ( ) of (35), we have terms like K~ K ~ U ~ V ~ .  But the 
summation K .  v .  is K times the component of u along K ,  which we designate v,. Writing 
K as the magnitude of K, the summation represented by this term as i,j, k ,  I range from 
1 to 3 reduces to 

l .  3 

K i K . L l . V .  3 2 3  = &12. (36) 

X i X . V . U .  I f 1  = X”;, (37) 

(Notice the parallel with the result obtained by Proudman 1952 for a virtual medium 
at rest, 

which he used to simplify the Lighthill far field solution.) It follows that, in (39, the 
summation 

Ki  Kj  Kk KL  ( P i  D j ( J ” ,  t -t 7 )  U k  Vl(J”‘, t ) )  

= K~ <t?f (y’, t + r )  G: (y”, t ) )  E K‘ R,b, c, 7), (38) 

where R, is a two-point correlation of vf .  With this replacement (35) simplifies to 

1 f c c  

where it is noted that the two points being correlated in R, are referred to a stationary 
reference frame. Correspondingly, (33) becomes 

where the correlation R,,, designates the same correlation with respect to the moving 
frame (velocity U,); it is obtained from R, via the transformation (31). Equations (39) 
and (40) are key results. 

These latest formulations for the power spectral density @ ( x l w )  may be put in 
perspective : they are all expressed in terms of the Green’s function G(x, y I w) for a 
stationary, oscillatory point source in an arbitrary flow U(x).  Equations (27) and (33) 
refer to a general source strength function Q ;  (39) and (40), on the other hand, refer 
to a source strength of the generalized Lighthill form Q = j~b) ?‘vi aj/C)yi 2yj (summed), 
to which pCy) K’ a,“ is equivalent. 

For exact application to (7), (lo), (A 12), and (A 14), U(x) takes the restricted form 
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of a transversely sheared flow U(x,). The Appendix (see (A 15) and (A 16)) justifies a 
relatively weak additional variation of U with axial distance xl, and it replaces x, with 
radial distance r for a round jet. Using this approximation, the Green’s function 
G(x, y I w )  herein refers to a realistic spreading round jet. (On the other hand, the Green’s 
function of the Lilley-based procedures has always been evaluated for a non-spreading 
cylindrical jet.) 

It is noteworthy (Lighthill 1952) that this double divergence form of the term Q 
implies that the sound sources are of quadrupole nature. In the time domain this was 
associated with an operator P/at2 in the far-field format; in the present wavenumber 
domain the factor 2 plays an equivalent role in the final equations. 

3.5. Virtual medium at rest 
This is the scenario of Lighthill (1952, 1954): the mean fluid flow Ui is incorporated 
into the source term via oi = Ui+ui .  The original region of flow is now treated as a 
‘virtual medium at rest’: Ui is effectively zero in the left-hand-side wave operator. For 
this case the oscillatory Green’s function is simply 

When the observer point x is in the far field (cf. after (20)), a sufficient approximation 
is, with x = 1x1, 

Thus, in this case, the vector K = - (Vy 
vector k given by 

of (22) may be identified with the wave 

(43) K = k = kx/x = wx/c, ,x ,  k = Ikl. 

Also, with the sources convected parallel to the x,-axis, U, = (U,, 0, 0), (32) yields 

0 = w [  1 - (U,/C,) - (x/x)] = w( 1 - M ,  cos 0) = w o  (44) 

This is just the Doppler-shifted source frequency that will yield an observed frequency 
w at x. 

3.6. Compact eddy approximation 
The time delay 7; between correlated source points is related to k .5 ,  by the equation 

wOrE = k.5,. (45) 

This is inferred from Chu (1973, above his equation (8), employing our (43) and (44)). 
Quoting from him, ‘ . ..According to Lighthill, retarded time can be neglected if wL/c ,  
is small so that the eddy size L is small compared with the wave-length of the sound 
that it generates. If this condition is met.. . then for 5, < L the term cos wOr2 [and 
similarly, e-iK.t7r~] can be approximated as unity’. When the turbulent ‘eddies’ meet this 
condition, the space-wavenumber transform of R,, of (40) (using K = k )  becomes 
merely a volume integral. Thus the simplifying assumption that the ‘eddies’ are 
‘ acoustically compact ’ in this sense permits a marked simplification. Most formulations 
for quantitative prediction of jet noise implicitly exploit this approximation. 
Unfortunately, it leads to overprediction of the amplifying effect of source convection 
at high subsonic speeds. We will return to this point later. 
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3.7. Actual nwdiurn us. t‘irtual medium 
Here we compare the noise emission from the actual medium, allowing for the effect 
of the fluid flow on propagation, to that predicted for the virtual medium at rest. We 
will show how the former differs from the latter (the Lighthill scenario) in being an 
extension to allow for flow-acoustic interaction effects : e.g. refraction that bends 
sound rays away from the jet axis to create a ‘cone of silence’ opening downstream, 
and we will show a close approach to the Lighthill case outside the cone of silence. 

It will be convenient to restrict attention to the power spectral density emitted from 
unit volume at y .  We designate this @(x,y I .J) and define it by the equation 

@(x I ( ,I)  = I:x @(x, y I o)) d‘y. 

We apply this to reinterpret equation (40) (‘ actual medium’), 
Green’s function and with restriction to uniform mean density 
scenario 

with the appropriate 
(pb) = po). For that 

(46 b) 

wherein we have anticipated that K may be approximated as k at jet noise frequencies : 
this is justified in terms of the calculations of Schubert (1969) in Ribner (1995, 
Appendix C). The corresponding result, using the respective Green’s function and wave 
vector K = k (exact in this case) for a virtual medium at rest (Lighthill format), 
designated by subscript V M ,  is 

The ratio of these two can be put in the form 

@k Y I w )  = [(47=) IG(K Y I (f,)l12 [@(x, Y I J/‘ (48) 

It will simplify discussion if we refer to the factor in brackets as a normalized Green’s 
function 

I G \ ( ~ / X , Y I ~ ) I  I(4n-~)IC(x,yI~~)l ,  (49) 

so that (48) may be written 

@(x, Y I 0) = I IG, I (x/-y3 Y b)I2 [@(X? Y I W)lv ‘M (50) 

with lGNl dependent solely on the direction of x by virtue of the 4nx normalization and 
the I/x decay of IG/ in the far field. 

4. ‘Normalized’ Green’s function, ( G , (  
4.1. Single choice jbr  entire jet  

The ‘normalized’ Green’s function JG,J defined in (49) is nominally a function of source 
location. In this section we develop evidence that the value for a single choice of source 
position y on the axis, designated yrv,, may serve as an effective average. 
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This was concluded in the context of a series of experiments (Atvars et al. 1965; 
Grande 1966) on the far-field directivity pattern of a ‘point’ source of sound immersed 
in a subsonic jet. Except for some uncertainty as to the accuracy of simulation of a 
point source, the measurements effectively yielded values of !GI2 normalized by the 
value at I9 = 90”. This result was deemed equivalent to JGNI2, on the grounds that the 
effect of wave convection was expected to be nil at 90”; that is, IGJ should reduce to 
(1/47cx) there. It was found that the geometric average of the $-dependence for 
symmetric off-axis positions + I9 or - I9 differed little from that of the on-axis source 
position for a given axial location yl. Further, the variation with y1  was small. This 
justifies referring lGNIZ to a single location, which will greatly simplify both utility and 
interpretation. 

Noting that the direction x / x  may be designated 9, cp in polar coordinates for a more 
general, non-round, jet, the effective average of the squared ‘ normalized Green 
function’ may be defined as ( G J ,  thus 

lGiv(%cp>Yrefl w)IZ = ((4nx)2 I G k Y  I w)12),v, (51) 
where yref is a representative value of y1 along the jet axis. (The dependence on cp, of 
course, disappears for a round jet.) According to the arguments above, this refers to 
an average over y .  In practice, however, it would be used as a surrogate for a weighted 
average; that is, equivalent to a single average value of IG(x,y I w)lz taken outside the 
integral of (40) to replace the value inside that varies with y .  The use of a surrogate 
single Green’s function has also been the practice in solutions of the Lilley equation 
(Mani 1976; Balsa 1976, 1977); Mani referred to the same experiments cited above as 
justification. Replacement of the y-dependent Green’s function of (49) by the single y -  
independent Green’s function of (51) allows immediate integration of (50) into 

(52) w I w )  = lGN(~,cp,.Y, I 0>lZ [@(x I W ) I V M .  

This states that the same frequency-dependent lGNIZ that applies to unit volume is, to 
a sufficient approximation, applicable to the jet as a whole. 

The left-hand side of (52) refers to the power spectral density of the jet noise at x with 
full allowance for convected wave effects of the mean jet flow. The right-hand-side 
bracketed term, subscripted VM, is the corresponding power spectral density calculated 
by Lighthill-based methods that do not allow for the jet flow: this has a multiplier, the 
squared normalized Green’s function (G,I2. The approximate relation (52) for  the entire 
jet and the corresponding ‘exact’ relation ( S O )  for  unit volume (invoking (46)) are the 
central results of this paper. We turn now to the implications. 

4.2. IG,( governs wave convection eflects 
The form of (52) tells us that the wave convection effects, refraction and shielding, are 
embodied in the normalized Green function 1GJ. This factor squared modifies the 
smooth directional pattern of intensity otherwise predicted (IGNI2 taken as unity). This 
is displayed in the evaluations of IGJ : experimental (injected ‘point’ source: Atvars 
et al. 1965; Grande 1966) and computational (Schubert 1969, 1972a, h ;  Mungur, 
Plumblee & Doak 1974). The most striking effect is a progressive reduction of intensity 
within a ‘cone of (relative) silence’ (figures 1 and 3) opening downstream along the jet 
axis: this is due to the sound having been refracted outward by the jet velocity 
gradients. 

For filtered jet noise there is a similar ‘cone of silence’ that depends with frequency. 
Several examples are compared with corresponding ‘point ’ source measurements in 
figure 3 (in decibels, labelled ‘pure tone’). The cited measurements of (GJ  were 
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Jet temperature -180°C - Jet noise 
Jet velocity 69 ft s-’ 
Frequency 3000 Hz Tone 

---- Injected pure 

B B 

---- Pure tone (ICJ‘) - Filtered jet noise (@(xiw)) 

FIGURE 3. Comparison of measured 1G,I2 with narrow-band filtered jet noise to show agreement 
within a conical region about the axis (refractive zone). Left-hand side: room temperature jet 
( M  = 0.5), refractive zone is ‘cone of silence’ (rays turn outward, reducing axial intensity); right- 
hand side: very cold jet (- 180 “C), refractive zone is enhanced intensity lobe (rays turn inward to a 
quasi-focus). (After Ribner 1981, based on Atvars et a/. 1965 and Grande 1966.) 

normalized to unity, or zero decibels, at 9 = 90°, but the curves in figure 3 have been 
radially shifted (a constant number of dB has been added) for best agreement near the 
axis. The close match at each frequency is impressive evidence that JG,I2 dominates the 
directivity defining the ‘cone of silence’. 

These facts, applied to (50) and (52),  permit the following interpretation: the factor 
JGJ2 serves to extend the Lighthill-based calculations into the refractive zone near the 
jet axis: the ‘cone of silence’ of figure 1 (but a focused lobe for cryogenic jets, see later). 
Reversing the dB shift of figure 3 shows that IGXl2 is near unity (0 dB) outside this zone. 
Insertion of this value in (52) yields [@(x I w ) ] ~ . ~ ~ ,  the Lighthill-based pattern. The value 
unity seems an adequate approximation except when there are shrouding jets: in that 
case the deviation from unity should quantify the shielding effect. 

The Lighthill-based calculations need not be ,formuluted in terms of the ,four- 
dimensional Fourier transform gf (46), despite its figuring in the derivation : other 
formulations deemed to be equivalent may be used. Most are formulated in space-time 
rather than wavenumber-frequency. In practice, relatively crude simplifying assump- 
tions have been used: one is the ‘compact eddy’ approximation discussed earlier; 
another is drastic oversimplification of the functional form (explicit or implicit) of the 
source correlation function R,, of (47) (e.g. a Gaussian form: see later). 

Schubert’s (1969, 1972u, b) evaluation of JG,v12 used an approach akin to 
computational fluid dynamics : he obtained a qualitative match with experiment, with 
fairly good agreement at low frequencies and Mach numbers. However, the computed 
depth in decibels of the ‘refraction valley’ was much exaggerated at high frequencies 
and high subsonic Mach numbers. The later analytical/numerical evaluation by 
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Munger et ul. (1974) remedied this deficiency: the computed depth was now within 
several dB of the experimental values.? 

Schubert's studies shows that the frequencies for which geometric acoustics is 
applicable are many-fold higher than those of jet noise. It was found that at these high 
frequencies the computed valley depth is grossly exaggerated (e.g. 90 dB prediction at 
M = 0.3). Despite this, some studies (e.g. Csanady 1976 and Morfey et al. 1978) 
attempt to quantify the 'cone of silence' via geometric acoustics. 

For heated or cooled jets, or jets of foreign gases, sound-speed gradients come into 
play (Atvars et ul. 1965; Grande 1966; Schubert 1969, 1972 a, h). Heating enhances the 
outward refraction, hence increases the depth of the refraction valley. Cooling has the 
opposite effect. If cold enough, the temperature gradients could dictate inward 
refraction strong enough to overpower the outward refraction imposed by the velocity 
gradients. This would give rise to some 'focusing' enhancement of noise intensity along 
the jet axis: IGJ should exhibit an axial lobe in place of a 'cone of silence'. This 
expectation was dramatically confirmed in the experiments of Grande : the en- 
hancement lobe was 9 dB at 3000 Hz for an A4 = 0.112 jet of nitrogen at - 180 "C. An 
almost identical lobe was found in his measurements of the jet noise in a narrow filter 
band at the same frequency (figure 3 ) .  Schubert's approximate numerical calculations 
of IGJ2 showed a similar, albeit exaggerated, lobe. 

5. Discussion 
5.1. Central result 

The central result of the paper may be restated in simplified terms. Lighthill posed his 
aerodynamic sound sources as radiating into a 'virtual medium at rest. ' Refraction of 
sound (creating the axial ' cone of silence') was suppressed by approximating the 
density in the dominant source term as constant ( p  = p,). But by deferring the step 
p = po, we can pose the radiation as being emitted into the actual jet flow. This brings 
the refractive effect of the flow gradients into play. Moreover, the residual sound source 
term is the same. 

Mathematically, the only change is replacement of the solution for a pure tone point 
source in a medium at rest by the solution for the source in a jet flow. The former can 
be written down by inspection as ei"'/471r; the latter is a complicated solution, 
G(x, y 1 o), of a convected wave equation. But, at frequencies characteristic ofjet noise, 
we find from both experiment and calculation that G reduces in the far field to eikr/4nr 
(with a phase shift) times a directional factor. That directional factor, for a single 
round jet, is near unity for angle 8 greater than some value 9,. For smaller angles it 
decreases sharply to a minimum on the jet axis. 9 = 0. This describes the 'cone of 
silence' (figures 1 and 3 ) .  In summary, in the far field the new G differs in amplitude 
from the Lighthill ei"'/4nr significantly only within the 'cone of silence'. Use of G thus 
serves to extend the Lighthill-based solutions into this refractive zone. But outside it 
may be dispensed with, with little error. 

7 Mungur et nl. (1974) model a round jet as though it were contained in a (virtual) conical nozzle 
of 10" half-angle: the streamlines are along radial lines. This differs from a free jet for which the flow 
is very close to axial. (Entrainment of the outer fluid modifies this only very near the jet boundary, 
where the velocity is very small.) Apparently this difference has little effect on the refractive effect of 
the flow, judging by the good agreement with experiment. 



5.2. Rt4utionship to other upproaches 
A variety of Lighthill-based solutions ~ formalisms for jet noise prediction - has been 
used with some success (e.g. Krishnappa & Csanady 1969; Ribner 1969; Pao & Lowson 
1970; Moon & Zelazny 1975). They were all approximations. As discussed, they 
usually involved simplistic replacements for the four dimensional Fourier transform 
formalism. The turbulence correlation function, if i t  was modelled at all (rather than 
bypassed by heuristic assumptions), was normally taken as separable in space and time. 
Chu (1966) improved the model. removing the spurious separability: he used data from 
his own comprehensive program of very credible measurements by hot wire. He did, 
however, avoid the four dimensional Fourier transform in the expressions for spectral 
density by invoking the ‘small eddy ’ assumption. Nevertheless, despite these deemed 
improvements, his predictive accuracy fell far short of the best in the cited references. 
Hindsight suggests the capabilities of his data may not have been optimally exploited. 
A revisit in the light of the present formalism could be profitable. 

The predictive problem is compounded by the difficulty of a four-dimensional 
Fourier transform. As noted. the ‘compact eddy’ approximation reduces this to a 
simple volume integral. But. unless corrected by a stratagem, this carries the price of 
overpredicting the convective amplification. The approach has, indeed, led to fairly 
accurate predictions, both for round and more complex jet configurations. However, 
even retaining this approximation, the predictive formalism could be improved as 
elaborated under (64) of Ribner (1994). The further inclusion of the factor lGA-12 will 
extend the solution into the ‘cone of silence’ (small-O region), and even improve the 
accuracy outside this region (by the amount JG,-J2 differs from unity). 

Lilley’s wave equation, in the hands of Balsa (1977), leads to a similar formula of 
form JGJ x four-dimensional Fourier transform of source correlation function. Here 
again, in practice the Fourier transform is bypassed by an approximation. There are 
other important differences. A major component, the shear term included in (7), is 
missing from the source term (except for a higher-order portion, normally 
neglected) - the consequences have been discussed; and the squared normalized Green 
function, IGLJ2. refers to a moving point source. The effects of source convection and 
wave convection - respectively governing amplification and refraction (via velocity 
gradients) - are thereby combined. In contradistinction, these effects are decoupled 
herein by the use of the value of IG,,,12 for a stationary source. That is, IG,I2 plays 
essentially the same role as [IG,,-l’ times amplification factor]: the two should be largely 
equivalent. 

It is this decoupling that allows the simplicity of the Lighthill-based formalisms to 
be applied outside the ‘cone of silence’, since JG,I‘ is near unity there. Another 
advantage is that this refractive IGJ (stationary source) is determined for a realistic 
spreading jet - either by calculation or experimentally - whereas IG,J2 (moving source) 
has been evaluated only for idealized, infinite, nonspreading jets. 

5.3. Two-microphone cross-correlutions 
An allusion to ‘fairly accurate predictions ’ has been made several paragraphs above : 
it refers to the credibility of Lighthill-based methods for predicting jet noise at angles 
outside the ‘cone of silence’. Even stronger evidence for this credibility is afforded by 
correlations of two microphones located on a large sphere centred on the jet nozzle: 
with one microphone fixed, the other is displaced either along a meridian or a circle of 
latitude. This has the virtue that correlations of two microphones are sensitive to 
details of the source instantaneous directivity, whereas the single microphone mean 
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FIGURE 4. Comparison of ---, Lighthill-based predictive theory with -, experiment for two- 
microphone cross-correlations. Such correlations are sensitive to instantaneous directivities of 
component source radiation patterns. The close agreement beyond the shaded refractive zone (‘cone 
of silence’) supports applicability of the theory in the outer region. (After Ribner 1978.) 

square response is not. It was with a series of such measurements carried out by 
Maestrello (1976) that the theory was compared. The Lighthill theory as developed by 
Ribner (1969) was extended to deal with this case (Ribner 1978: broadband; Richarz 
1979 : narrow frequency bands). It was found that prediction of two-microphone cross- 
correlations along circles of latitude showed good qualitative agreement over a range 
of angular separations, and for different latitudes. This was true both in broadband 
and the more demanding narrow bands (see also Musafir, Slama & Zindeluk 1984; 
Musafir 1986). Microphones located along a meridian exhibit a cusp-like correlation 
in broadband, decaying sharply with separation (Maestrello 1976). The agreement of 
the theory here was particularly striking outside the ‘cone of silence’ (figure 4, after 
Ribner 1978). It makes a strong case for the applicability of the basic Lighthill theory 
in all the outer region. 

5.4. Issue of convective amplijication 
Convection of the jet turbulence by the mean flow is reflected in the motion of the 
‘source’ terms producing the noise. The Doppler effect yields a ‘convective 
amplification’ maximizing in the downstream direction (opposed, however, by the 
refractive ‘cone of silence’). This is accounted for in the Lilley theory by use of a 
moving-source Green’s function. The Lighthill theory, as we have used it (Ribner 1964 
and ff.) employs a stationary-source Green’s function : the amplification is inferred 
instead from the space-time correlations in the source field. These have the form of a 
moving pattern and permit a direct calculation. For mathematical simplicity, a 
Gaussian form of correlation was employed, resulting in an amplification factor for the 
broadband radiated intensity per unit volume. This displayed the M+O intensity as 
multiplied by a convective amplification factor, C5, given by 

c-5 = [( 1 - M ,  cos 8 ) 2  + 2 ~ ; ] - 5 ’ z ,  a* = 0 2 L 2 / 7 c C :  (53)  
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in terms of the source pattern convection Mach number M,; a dependence on the 
product of frequency times turbulence scale in CI, which is only weakly variable, was 
ignored by setting CL = constant. 

All of the treatments of convective amplification involve approximations of one kind 
or another. They figure in the favourable comparisons of theory with experiment cited 
in the Introduction. For the Lilley-based moving-source Green’s function approach, 
we quote Mani (19764: ‘To allow for jet spread, etc., the comparisons are all carried 
out assuming eddies moving at 65% of the nominal ideal-jet velocity in a slug flow, 
which is itself assumed to be 65% of the nominal ideal-jet velocity.’ Balsa ( 1 9 7 6 ~ )  
makes a similar assumption. This may be a judicious approximation, but its 
quantitative equivalence to the jet scenario is open to question. Thus the good 
agreement with experimental jet noise directivity outside the ‘cone of silence ’ may be 
partly fortuitous. 

On the other hand, the Lighthill-based convection factor C5, defined in (53) ,  
likewise contains adjustable parameters, most notably the eddy convection Mach 
number M ,  (the other parameter CL is relatively weak). Ribner’s (1977, 1981) good 
agreement with the same measurements results primarily from his choice of M ,  as 50 YO 
of the jet Mach number, rather than Mani’s 65 YO, a value measured by Davies, Fisher 
& Barratt (1963). So again the agreement may be partly fortuitous. But here also the 
parameter estimate has some rationale: the Davies et al. value is an average along the 
jet from y / D  = 1.5 to 4.5, but a better average would cover the major noise generating 
region, measured with an acoustic mirror technique as y / D  = 4 to about 8 by Grosche, 
Jones & Wilhold (1973). This average should come to substantially less than 65 YO of 
the jet Mach number, since the jet centreline speed is down to about 82 Yo of the nozzle 
velocity at v / D  = 8. 

One approximation common to all these approaches is the use of a single convection 
factor, at each frequency and Mach number, to represent an entire jet. This single 
factor is, in effect, a weighted average of values tagged to volume elements throughout 
the jet. This was implicit in the remarks just above. It is not at  all clear how much error 
this might introduce. 

5.5. Issue c?f’ shielding 
Mani (1972, 1976a, b) and Balsa (1977) have pointed to a ‘shielding’ role of the mean 
flow in reducing the convective amplification (a function of direction) at  high 
frequencies. But the comparisons of Cp5 with experiment, cited above, are comparably 
good without invoking shielding. When we bring in the uncertainties in convective 
amplification prediction (last paragraph), it would seem there has been no decisive 
evidence for its reduction by shielding. 

We would argue that the frequencies of jet noise are too low for significant shielding: 
the flow dimensions would have to be much larger than a typical wavelength of the 
sound (Powell 1960, Ribner 1960). This is also a requirement for geometric acoustics 
(ray acoustics) to apply. Schubert’s calculations (1969, 1972a, 6) of refraction, both by 
ray acoustics and wave acoustics, show that jet noise is very far from that regime. All 
these remarks refer to a single round jet. 

The case of multitude jets (or equivalent corrugated nozzle jets) is another matter. 
Substantial shielding of the high-frequency noise of the inner jets by a ring of the 
outermost jets is a demonstrated fact. Balsa (1976), via his moving-source Green’s 
function, shows apparent agreement with measurements that he cites. No stationary- 
source Green’s function, as proposed herein, has as yet been evaluated for this scenario, 
but since both techniques incorporate the same physics, there is no reason for such an 
evaluation to be invalid. 
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5.6. Range of applicability 
The results herein are for the far field only. Moreover, they are presumed to be 
applicable primarily for subsonic jets. For supersonic jets additional noise sources 
come into play. Tam (1991), in his review article, develops the case for instability 
waves, identified as ‘large scale coherent structures’, being a major source of noise. He 
evaluates the noise directly via a ‘stochastic wave model’ with very impressive 
agreement with experiment. We note that these instability waves, to the extent that they 
coexist with the random turbulence, will contribute to the correlation function R, used 
herein: if the contribution were known, the present theory could be applied. 
Evaluation is another matter: the similarity laws for jet turbulence, which have been 
used with success for subsonic jets, would have to be re-evaluated for the supersonic 
regime. A further possible source of error is our replacement of density p by its local 
time average p(y)  in the source terms. 

Relevant to the last remark, there will be a pattern of shock waves if the jet does not 
issue at the design speed from a properly contoured convergent-divergent nozzle. It 
was shown many years ago that shock-turbulence interaction would generate intense 
noise (Lighthill 1953, Ribner 1953, 1954). In recent years Tam (summarized in his cited 
review) has attempted quantitative prediction of this shock-associated noise; he 
analysed the interaction between instability waves and a ‘wave guide’ model for the 
shock structure. His near field patterns show a close match to measurements. 

The results are further restricted to jets issuing into ambient fluid at rest: that is, 
static test conditions. The effects of forward flight on the jet noise are not considered. 
Michalke & Michel (1979, 1980) have extended the Lighthill theory to provide a 
successful prediction of these effects. This takes the form of a scaling law that maps the 
intensity of a static jet at certain jet Mach number and direction into that for a moving 
jet at an altered Mach number, direction, and distance. (See also an approach via CFD 
methods (Bayliss et al. 1995)). Refraction, governing extension into the ‘cone of 
silence’, is not allowed for: this would involve a further development of the present 
stationary-source Green’s function approach. 

This research was supported at NASA by tenure part time at the Langley Research 
Center as a Distinguished Research Associate, and at the University of Toronto 
Institute for Aerospace Studies with funds from a grant from the Natural Sciences and 
Engineering Research Council of Canada. I am grateful to P. Pao, J. C. Hardin, F. 
Farassat, A. Wenzel, and G. L. McAninch for helpful comments. J. Atvars and L. K. 
Schubert were kind enough to refresh my memory on unpublished aspects of their early 
experimental work. 

Appendix. Generalized convective wave modifications of Lighthill’s 
equation 

Expansion of Lighthill source term, QL 
The restriction to a transversely sheared mean flow of uniform density, (3), is relaxed 

here: Lighthill’s source term expression, which we shall call QL (the right-hand side of 
(l)), is expanded under the specifications 

A. 1 .  Exact wave equation 

vi = ui+ui, ui = U i ( X ) ,  (vi>av = ui, (A 1) 

p = mi) +p’, ( p),, = i j ( X i ) .  (A 2) 
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By Csanady’s (1966) equation (3), Q,, expands as follows: 
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With this expansion it is easily shown that (1) of the main text is equivalent to 
Schubert’s (1969, 1972) exact wave equation for an inviscid non-heat-conducting fluid. 
Inserting (A 1) into (A 3 )  yields, according to Csanady, 

(When U, = ( U(x2), 0,O) this reduces to the right-hand side of (4) of the main text.) 
With the further expansion 

~ L ~ U  u au appu c ? ~ u , ~ ~  x ~ , c ? u  c?u c?p ?u, MI ap ___ 1. 3 + 2 2 _ - -  +2/1-----i+2u 2 - + 2 - -  +u  u __ 
c?x,axl ax., ax, I -  p m  ax3 c’x, J c ? ~ ,  ax, 8 3 ax,ax, 

and the definition 

and some rearrangement, Q, becomes 

This expansion of the acoustic source terms, the right-hand side of the wave equation 
( I ) ,  is exact. 

A.2. Approximate wat:e equations 
Incompressible turbulence 

We now introduce approximations in two stages. First, in all but the first three terms 
of QI,, we neglect the compressibility of the turbulence in the application to subsonic 
flows. We argue that density perturbations p’ in the non-excepted terms account for 
scattering of sound by turbulence, and they may be neglected in dealing with 
generation of sound. Thus, in these terms, p may be replaced by its local temporal mean 
p((x). Consistently, it is implied that u,, in all but the excepted terms, contains no 
compressible component. Despite this assumed incompressibility of these source terms, 
sound (pressure waves) will indeed by generated, as Lighthill (1952) showed. Thus 
compressibility has been retained where acoustically necessary : in the final left-hand- 
side wave operator. 
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The first excepted term is 2p(aUi/a.,)(auj/axi). By the argument in the main text 
above (7), the very small compressible, or acoustic part of this term, being linear in uj ,  
participates to the first order in wave propagation; thus we move it to the left-hand- 
side wave operator. The terms c i2  azp/at2 and - D2p/Dt2 have also to do with wave 
propagation; we move them likewise to the left-hand side, approximating D2p/Dt2 by 
P D 2 p / D t 2 .  (The order of magnitude of the error in this approximation is estimated 
in Ribner 1995, Appendix B.) 

With these term shifts from the right-hand side (QL) and approximation of p by p 
therein, (1) may be rewritten. First we need an approximate equation for mean flow 
continuity. Taking the correlation & as negligible yields this as 

ap u,/ax, = 0. (A 8) 
By virtue of (A 8), two terms of the approximate QL may be collapsed into one: 

The modified (1) then reads 

Transversely sheared flow 

transverse density gradient as well : 
Let us specialize now to a transversely sheared flow ((3) of the main text), with 

ui = (~(X,>,O,O), p = p(x2). (A 11) 
The modification (A 10) of (1) simplifies to 

But it can be quickly verified by direct expansion that 

so that an alternative form is 
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where i t  is recalled that vi is the instantaneous resultant flow U,+u,, as defined in 
(A 1). An equation of the form (A 14) results also for a cylindrical jet Ui = (U(r) ,  O,O), 
p = p(r) ,  if u,, x2 are replaced by urr r ,  respectively (see (A 15)). Equations (A 12) and 
(A 14) are the key results of this Appendix; they generalize (7) and (10) of the main 
text, respectively, to the case of flows of non-uniform mean density. The applications 
and implications are discussed below. 

Jet flow 
Following Schubert (1969, 1972), we note that Ui in a jet is essentially unidirectional: 

Ui = [U(r; xl), 0, 01, r = .\/(xi +xf) ' I 2  round jet 

= x, two-dimensional jet, (A 15) 

with a strong dependence on r ,  and a weak dependence on x,. Further, 

p = p@; x,), (A 16) 

with a similar dependence. Thus, for both U and p, the gradients along x1 are very 
much less than those along r.  For the foregoing transversely sheared flow the x,- 
gradients are identically zero; requiring this led to (A 12)-(A 14), as well as (7) and 
(10). It follows that (A 12) to (A 14) may be applied to jet flow as a close 
approximation, using (A 15) and (A 16), with x, replaced by r .  With this interpretation, 
the Green's function G(x, y I w )  calculated throughout this paper may refer to a realistic 
spreading jet. On the other hand, the G(x, y 1 w )  obtained in the Lilley-based procedures 
refers to a jet modelled as a non-spreading infinite cylinder 

Density scenarios: p = constant us. p = p(r)  
Let us specialize further to a uniform mean density. 

p = po = constant. 

This, together with (A l l ) ,  recovers the scenario of the main text. It is seen that the 
density gradient terms drop out, and (A 12) and (A 14) reduce to (7) and (lo), 
respectively: the modified Lighthill equation in the form of (10) is confirmed as a 
special case of the more general form of this Appendix, (A 14). 

From the foregoing, it is clear that density gradients, via the additional source terms, 
cause more noise to be generated. This has been explored in the context of hot jets by 
Morfey (1973), Mani (1976h), and Michalke & Michel(1979, 1980). The source terms 
in (A 12), (A 14) appear similar to those deduced by Mani. The term 2(c?u,tfi/ 
ax,)(.'p/c?x,) is essentially of dipole form, aQ,/C?x,, (treating C:p/c?x, as a spatial 
constant): i t  would yield a factor in place of K' in an equation like (40). As a 
consequence of this, or by arguments given in the cited references, the corresponding 
radiated sound power would vary as U 6 ;  they showed it could exceed the ordinary 
quadrupole-source jet noise, with its U s  law, for sufficiently hot jets. The term 
ui C:'p/c?x~ is of monopole form, leading to a U 4  law (K' factor replaced by unity). This 
would radiate very weakly, the curvature .?',?f/?,u; being minimal in the zone of 
strongest turbulence, where the mean flow shear and ap/L?.u, both maximize. 

Over time ' ... dozens of equivalent (and nonequivalent) source term expansions have 
been published by flow noise researchers. This multiplicity of competing source terms 
has been a major contributor to confusion.. . ' (Ribner 1981). In this author's view, the 
effective limit in the law of diminishing returns has been reached in the expansions of 

(A 17) 
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this Appendix: of the Lighthill wave operator (left-hand side of (A 10)) and of the 
Lighthill source term for an inviscid non-heatconducting fluid (exact, (A 7) ; 
approximate (A 14)). 

R E F E R E N C E S  
AHUJA, K. K. 1972 An experimental study of subsonic jet noise with particular reference to the effect 

of upstream disturbances. MPhil. Thesis, University of London. 
ATVARS, J., SCHUBERT, L. K., GRANDE, E. & RIBNER, H. S. 1965 Refraction of sound by jet flow or 

jet temperature. University of Toronto Institute for Aerospace Studies, UTZAS TN 109, 1965; 

BALSA, T. F. 1976a The far field of high frequency convected singularities in sheared flows, with an 

BALSA, T. F. 1976b The shielding of a convected source by an annular jet with an application to the 

BALSA, T. F. 1977 The acoustic field of source in shear flow with application to jet noise: convective 

BALSA, T. F. & GLIEBE, P. R. 1977 Aerodynamics and noise of coaxial jets. AZAA J.  15, 155&1558. 
BALSA, T. F., GLIEBE, P. R., KANTOLA, R. A., MANI, R., STRINGAS, E. J. & WANG, J. C. F. 1978 

High velocity jet noise source location and reduction. Task 2 - theoretical developments and 
basic experiments. FAA-RD76-79, II. (Available DTIC as AD A094291.) 

BAYLISS, A., MAESTRELLO, L., MCGREWY, J. L. & FENNO, C. C. 1995 Response of multi-panel 
assembly to noise from ajet in forward motion. 1st Joint CEASIAZAA Aeroacoustics Conf. (16th 
AIAA Aeroacoustics Con$), Munich, 12-15 June. 

BLOKHINTSEV, D. I. 1956 Acoustics of a nonhomogeneous moving medium. NACA TM 1399 
(translation of ‘Akustika Neodnorodnoi Dvizhushcheisya Sredy’. Ogiz, Gosudarstvennoe 
Izdatel’ stvo, Tekhniko-Teoreticheskoi Literatury, Moskva, 1946, Leningrad). 

CHU, W. T. 1966 Turbulence measurements relevant to jet noise. University of Toronto, Institute 
for Aerospace Studies, UTZAS Rep. 119. 

CHU, W. T. 1973 Moving frame analysis of jet noise. J.  Acoust. Soc. Am. 53 ,  1439-1440. 
CHU, W. T. 1974 Narrow band measurements of jet noise carried out in the USC anechoic jet 

facility. Department of Aerospace Engineering, University of Southern California Report. 
CSANADY, G. T. 1966 The effect of mean velocity variations on jet noise. J. Fluid Mech. 26, 183-197. 
DAVIS, P. 0. A. L., FISHER, M. J. & BARRATT, M. J. 1963 The characteristics of the turbulence in 

the mixing region of a round jet. J.  Fluid Mech. 15, 337-367. 
DOAK, P. E. 1972 Analysis of internally generated sound in continuous materials: 2. A critical review 

of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with 
special reference to supersonic jet noise. J. Sound Vib. 25, 263-335. 

FFOWCS WILLIAMS, J. E. 1960 Some thoughts on the effects of aircraft motion and eddy convection 
on the noise from air jets. University of Southampton, Department of Aeronautics and 
Astronautics, USAA Rep. 155. 

FFOWCS WILLIAMS, J. E. 1963 The noise from turbulence convected at high speed. Phil. Trans. R. 
Soc. Lond. A 255,469-503. 

GLIEBE, P. R. 1980 Diagnostic evaluation of jet noise suppression mechanisms. J. Aircraft 17, 

GLIEBE, P. R. & BALSA, T. F. 1978 Aeroacoustics of axisymmetric single- and dual-flow exhaust 
nozzles. J. Aircraft 15, 743-749. 

GLIEBE, P. R., BRAUSCH, J. F., MAJJIGI, R. K. & LEE, R. 1991 Jet noise suppression. Aeroacoustics 
of Flight Vehicles: Theory and Practice. Vol. 2: Noise Control. NASA Ref. Publication 1258, vol. 
2; WRDC Tech. Rep. 90-3052, 201-269. 

NASA CR-494, 1966. 

application to jet noise prediction. J. Fluid Mech. 74, 193-208. 

performance of multitude suppressors. J. Sound Vib. 44, 179-189. 

amplification. J. Fluid Mech. 79, 3347. 

837-842. 

GOLDSTEIN, M. E. 1976 Aeroacoustics. McGraw-Hill. 
GRANDE, E. 1966 Refraction of sound by jet flow and jet temperature 11. University of Toronto 

Institute for Aerospace Studies, UTZAS TN 110, 1966; NASA CR-840, 1967. 
GROSCHE, F.-R., JONES, J. H. & WILHOLD, G. A. 1973 Measurements of the distribution of sound 

source intensities in turbulent jets. AIA A Aero-Acoustics Conf Seattle, 15-1 7 October, paper 
73-989. 



E#&c.ts oj.jet jiow on jet  noise 23 

KRAICHNAN, R. H. 1953 The scattering of sound in a turbulent medium. J .  Acoust. Soc. Am. 25, 

KRISHNAPPA, G. 1968 Estimation of the intensity of noise radiated from a subsonic circular jet. Proc. 
AFOSRI Unirwsity of Toronto Instirute for Aerospace Studies S-vmp. Toronto. University of 
Toronto Press. 

KRISHNAPPA, G. & CSANADY, G .  T. 1969 An experimental investigation of the composition of jet 
noise. J .  Fluid Mech. 37, 149-159. 

LIGHTHILL, M. J. 1952 On sound generated aerodynamically - I. General theory. Proc. R. Soc. 
Lond. A 211. 564587. 

LIGHTHILL, M. J. 1954 On sound generated aerodynamically - 11. Turbulence as a source of sound. 
ProL,. R. Soc. Lond. A 222, 1-32. 

LIGHTHILL, M. J .  1953 On the energy scattered from the interaction of turbulence with sound or 
shock waves. Proc. Cunzb. Phil. Soc. 49, 531-551. 

LILLEY, G. M. 1958 On the noise from air jets. Aeronautical Research Council (Great Britain), ARC 

LILLEY, G. M. 1972 The generation and radiation of supersonic jet noise. Vol. IV -Theory of 
turbulence generated jet noise, noise generation from upstream sources, and combustion noise, 
Part 11: Generation of sound in a mixing region. Air Force Aero Propulsion Lab., AFAPL-TR- 
53. 

LUSH, P. A. 1971 Measurements of subsonic jet noise and comparison with experiment. J.  Fluid 
Mech. 46, 477-500. 

MAESTRELLO, L. 1976 Two-point correlations of sound pressure in the far field of a jet: Experiment 

MANI, R. 1972 A moving source problem relevant to jet noise. J .  Sound Vib. 25, 337-347. 
MANI, R. 1976~i The influence of jet flow on jet noise. Part 1. The noise of unheated jets. J .  Fluid 

MANI, R. 19766 The influence ofjet flow on jet noise. Part 2. The noise of heated jets. J .  Fluid Mech. 

MAWARDI, 0. K. 1955 On the spectrum of noise from turbulence. J .  Acousr. Soc. Am. 27, 1995, pp. 

MICHALKE, A. & MICHEL, U .  1979 Prediction ofjet noise in flight from static tests. J .  Sound Vib. 67, 

MICHALKE. A. & MICHEL, U. 1980 Prediction of flyover noise from single and coannular jets. A M A  
paper 80- 103 1. 

MOLLO-CHRISTENSEN, E., KOLPIN, M. A. & MARTUCELLI, J. R. 1963 Experiments on jet flows and 
jet noise. Far field spectra and directivity patterns. MIT Aeroelasticity and Structures Research 
Laboratory. A S R L  T R  1007. 

MOON, L. F. & ZELAZNY, S. W. 1975 Experimental and analytical study ofjet noise modeling. AIAA 

MORFEY. C. L. 1973 Amplification of aerodynamic noise by convected flow inhomogeneities. J .  
Sound Vib. 31,  391-397. 

MORFEY. C. L., SZEWCZYK, V. M. &TESTER, B. J. 1978 New scaling laws for hot and cold jet mixing 
noise, based on a geometric acoustics model. J .  Sound Vib. 61, 255-292. 

MUNGUR, P., PLUMBLEE, H. E. & DOAK, P. E. 1974 Analysis of acoustic radiation in a jet flow 
environment. J .  Sound Vib. 36, 21-52. 

MUSAFIR, R. E. 1986 The use of polar correlation in the characterization of multipolar source 
distributions. Anal.v.sis, Inter-noise 86, Cambridge, MA, 21-23 July, pp. 1335-1340. 

MUSAFIR, R. E., SLAMA, J. G. & ZINDELUK, M. 1984 Quadrupole correlations and jet noise. Physicul 
Phenomena. Inter-noise 84, Honolulu, 3-5 December, pp. 257-260. 

NOSSIER, N .  S. M. & RIBNER, H. S. 1975 Tests of a theoretical model of jet noise. AIAA paper 

PAO, S. P. & LOWSON, M. V. 1970 Some applications of jet noise theory. AIAA paper 70-233, 
January, New York. 

PHILLIPS, 0. M.  1960 On the generation of sound by supersonic turbulent shear layers. J .  Fluid 
Mech 9, 1 28. 

1096-1 104. 

20, 376N40-FM2724. 

N A S A  TM X-72835. 

Mech. 73, 153-178. 

73, 179-793. 

442445. 

347-367. 

J .  13. 387-393. 

75-43 6. 



24 H.  S. Ribner 

POWELL, A. 1954 Survey of experiments on jet-noise. Aircraft Engng 26, 2-9. 
POWELL, A. 1960 Fundamental notions concerning convection of aerodynamic noise generators. 

Program, 59th nitg Acoust. SOC. Am. Providence, RI, 9-11 June, paper 05 (abstract). 
PROUDMAN, I. 1952 The generation of noise by isotropic turbulence. Proc. R. Soc. Loiid. A 214, 

119-132. 
RIBNER, H. S. 1953 Convection of a pattern of vorticity through a shock wave. NACA TN 2864, 

1953, NACA Rep. 1164, 1954. 
RIBNER, H. S. 1954 Shock-turbulence interaction and the generation of noise. NACA TN 3255, 

1954, NACA Rep. 1233, 1955. 
RIBNER, H. S. 1960 Energy flux from an acoustic source contained in a moving fluid element and its 

relation to jet noise. J. Acoust. SOC. Am. 32, 1159-1 160 (Letter). 
RIBNER, H. S. 1962 Aerodynamic sound from fluid dilatations: a theory of sound from jets and other 

flows. University of Toronto, Institute of Aerophysics (now Aerospace Studies), UTIA Rep. 86, 
AFOSR TN 3430. 

RIBNER, H. S. 1964 The generation of sound by turbulent jets. Advances in Applied Mechanics, vol. 
8, pp. 103-182. Academic. 

RIBNER, H. S. 1969 Quadrupole correlations governing the pattern of jet noise. J. Fluid Mech. 38, 
1-24. 

RIBNER, H. S. 1977 On the role of the shear term in jet noise. J .  Sound Vib. 52, 121-132. 
RIBNER, H. S. 1978 Two point correlations of jet noise. J.  Sound Vib. 56, 1-19. 
RIBNER, H. S. 1981 Perspectives on jet noise. Dryden Lecture. AIAA J .  19, 1513-1526. 
RIBNER, H. S. 1995 An extension of the Lighthill theory of jet noise to encompass refraction and 

shielding. NASA TM 110163. 
RICHARZ, W. G. 1979 Theory of cross-spectral densities ofjet noise. Mechanics of Sound Generation 

in Flows, IUTAMIICAIAIAA Symp., Gottingen, Max-Planck-Institut fur Stromungsforschung, 
28-31 August (ed. E. A. Muller), pp. 153-158. 

SCHUBERT, L. K. 1969 Refraction of sound by a jet: a numerical study. University of Toronto 
Institute for Aerospace Studies, Rep. 144. 

SCHUBERT, L. K. 1972a Numerical study of sound refraction by a jet flow I .  Ray acoustics. J. 
Acoust. Soc. Am. 51, 439446. 

SCHUBERT, L. K.  19726 Numerical study of sound refraction by a jet flow 11. Wave acoustics. J .  
Acoust. SOC. Am. 51, 447463. 

TAM, C. K. W. 1991 Jet noise generated by large-scale coherent motion. Aeroacoustics of Flight 
Vehicles: Theory and Practice. Vol I :  Noise Sources. NASA Ref. Pub. 1258, vol. 1 ; WRDC Tech. 
Rep. 90-3052, 31 1-390. 

TESTER, B. J. & MORFEY, C. L. 1976 Developments in jet noise modelling - theoretical predictions 
and comparison with measured data. J .  Sound Vib. 46, 79-103. 


